Efficient Synthesis of *B*-Iododialkyl- and *B*-Alkyldiiodoboranes as Their Acetonitrile Complexes: Application for the Enolboration – Aldolization of Ethyl Ketones

by P. Veeraraghavan Ramachandran*, Mu-Fa Zou, and Herbert C. Brown*

Herbert C. Brown Center for Borane Research, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA (phone: 765-494-5303; fax: 765-494-0239; e-mail: chandran@purdue.edu)

Dedicated to Professor Dieter Seebach on the occasion of his 65th birthday

A series of *B*-(iododialkyl)boranes and *B*-(alkyldiiodo)boranes have been readily synthesized as their MeCN complexes from the corresponding chloro- and bromoboranes by treatment with NaI or KI in MeCN. In the presence of $EtN(i-Pr)_2$, the *B*-(cyclohexyldiiodo)borane-acetonitrile complex converts ethyl ketones exclusively to the (*Z*)-enolates, which, upon aldolization with a series of aldehydes, provide the corresponding *syn*-aldols exclusively in high yields.

1. Introduction. – Of the several modified boranes available to the organic chemists, the haloboranes have found significant applications in organic syntheses [1]. For example, monochloroborane has been used for the preparation of dialkylchloroboranes, such as *B*-chloro(dicyclohexyl)borane and *B*-chloro(disopinocampheyl)borane (*Aldrich: DIP-Chloride*TM). The former reagent is efficient for the *anti*-selective enolboration–aldolization reaction [2], and the latter is an excellent reagent for the reduction of several classes of ketones in very high enantiomeric excess [3]. *B*-Chloro(dialkyl)boranes also act as intermediates in the synthesis of the corresponding alkylamines [4]. Dichloroborane has been used for the synthesis of the corresponding *B*-alkyldichloroboranes, which give rise to *syn*-selective enolboration–aldolization reaction [5]. Dichloroborane-methyl sulfide has been utilized for the reduction of alkyl or aryl azides to the corresponding amines [6]. Dibromoboranes have been used in the synthesis of (*E*)- or (*Z*)-alkenes or (*E*,*E*)-, (*E*,*Z*)-, or (*Z*,*Z*)-dienes at well [7]. Recently, we have reported the cleavage of epoxides with the bromoborane-methyl sulfide complex [8].

Although mono- and dichloro-, and mono- and dibromoboranes are commercially available as their methyl-sulfide complexes, the corresponding iodoboranes are not available. The synthesis of these iodoboranes involves the treatment of borane-methyl sulfide with I_2 in CS_2 [9]. The hydroboration of alkenes with iodoboranes is not always clean, though [10]. As an alternative, we treated dialkylboranes with I_2 [10], or applied the *Matteson* procedure [11], *i.e.*, the *in situ* hydroboration with triiodoborane and trimethylsilane, for the preparation of *B*-dialkyliodoboranes [12]. However, these procedures also failed to provide the corresponding *B*-alkyldiiodoboranes efficiently.

In contrast to *B*-alkylchloro- and *B*-alkylbromoboranes, the corresponding iodoboranes have been sparingly used in organic synthesis. This could be attributed

to the difficulties in their preparation and their lack of stability. We had shown that *B*-iododiisopinocampheylborane is an excellent reagent for the asymmetric ring-opening of *meso*-epoxides [13] and that *B*-dicyclohexyliodoborane is a *syn*-selective enolboration-aldolization reagent [14].

We have now found that both *B*-dialkyliodo- and *B*-alkyldiiodoboranes can be readily synthesized *via* a quantitative halogen-exchange reaction. Our successful synthesis of these iodoboranes and their application to the enolboration–aldolization reactions of ethyl ketones are reported herein.

2. Results and Discussion. – *Preparation of* B-*Dialkyliodoborane-Acetonitrile Complex.* Upon dissolving *B*-chlorodicyclohexylborane in MeCN, the ¹¹B-NMR spectrum revealed a shift from δ 74 to 8 ppm, indicating strong complex formation. Addition of 1.2 equiv. of NaI or KI dissolved in MeCN afforded a solid, presumably NaCl or KCl, respectively, and the ¹¹B-NMR spectra revealed a *singlet* at δ 5 ppm (*Scheme 1*). Although a downfield shift was expected in the NMR spectrum for the iodoborane compared to the chloroborane complex, the observed upfield shift may be attributed to a stronger MeCN complex with a superior *Lewis* acid.

Filtration of the inorganic salt and removal of MeCN provided a solid compound well-soluble in pentane, CH_2Cl_2 , and CCl_4 . However, upon dissolving in Et₂O or THF, the solution became warm, and the ¹¹B-NMR spectrum showed a peak at δ 52 ppm, indicating that, as expected, the iodoborane reagent had cleaved the ether (*Scheme 2*). Thus, we have discovered a *trans*-halogenation procedure for the synthesis of alkyliodoboranes. We applied this procedure to the synthesis of a series of *B*-alkyliodoboranes as their MeCN complexes from the corresponding chloro- and bromoboranes (*Scheme 1*).

Preparation of B-Alkyldiiodoboranes. Although it should be possible to prepare *B*-alkyldiiodoboranes *via i*) the hydroboration of an alkene with diiodoborane-methyl sulfide [9], *ii*) the addition of I_2 to the corresponding alkylborane (RBH₂), or *iii*) *Matteson*'s trimethylsilane reduction of the corresponding dichloroborane, we experienced difficulties in obtaining pure *B*-alkyldiiodoboranes with all of the above procedures. We, therefore, applied the new *trans*-halogenation procedure for the

3028

synthesis of *B*-alkyldiiodoboranes. The ¹¹B-NMR spectrum of *B*-dichlorocyclohexylborane in MeCN revealed a signal at δ 6 ppm as compared to 62 ppm in pentane or CH₂Cl₂. Treatment of this complex with 2.5 equiv. of NaI or KI in MeCN also led to the precipitation of a solid, presumably NaCl or KCl, respectively. Surprisingly, unlike in the case of the *B*-dialkyliodoborane-acetonitrile complex, the ¹¹B-NMR spectrum exhibited no change (*Scheme 3*). However, THF was instantaneously cleaved (¹¹B-NMR: δ 31 ppm), revealing that the conversion to the diiodoborane-acetonitrile complex had occurred.

Removal of the solvent (MeCN) provided a solid mixture of $ChxBI_2 \cdot MeCN$, NaCl, and NaI. Chemically pure $ChxBI_2 \cdot MeCN$ was obtained by selective dissolution in CH_2Cl_2 , followed by filtration and removal of the solvent. The solubility of $ChxBI_2 \cdot MeCN$ was examined next. Unlike $Chx_2BI \cdot MeCN$, $ChxBI_2 \cdot MeCN$ does not dissolve in hexanes. However, it readily dissolves in MeCN and CH_2Cl_2 . The ¹¹B-NMR spectra of $ChxBI_2 \cdot MeCN$ in these solvents revealed peaks at δ 6 and 8 ppm, respectively. A series of *B*-alkyldiiodoboranes were prepared from the corresponding *B*-alkyldichloro- and *B*-alkyldibromoboranes (*Scheme 3*).

With the above mono- and dialkyliodoborane-acetonitrile complexes in our hands, we decided to examine their utility in organic synthesis. We reported earlier that *B*-dicyclohexyliodoborane is an efficient (*Z*)-enol- and *syn*-aldol-producing reagent [14]. Although we have already reported the utility of *B*-alkyldichloro- and *B*-alkyldibromoboranes [5], we could not test the corresponding diiodoboranes since none of our earlier procedures afforded the pure reagent.

Hence, we decided to examine $ChxBI_2 \cdot MeCN$ for the enolboration-aldolization reaction.

Enolboration–Aldolization with $ChxBI_2 \cdot MeCN$ Complex. Addition of $EtN(i-Pr)_2$ (1 equiv.) to the brown solution of $ChxBI_2 \cdot MeCN$ in CH_2Cl_2 , followed by ¹¹B-NMR-spectroscopic analysis, revealed a *singlet* at δ 12 ppm, indicating that the amine probably displaces MeCN from the complex. We used the amine complex for the enolboration of diethyl ketone in CH_2Cl_2 at -78° . The mixture was stirred for 1 h, followed by addition of PhCHO at -78° . After 2 h, the mixture was quenched with phosphate buffer (pH 7.0) and oxidized (H₂O₂). ¹H-NMR Analysis of the crude product revealed the exclusive formation of the *syn*-aldol, thus providing the evidence that the enolization was $\geq 99\%$ stereoselective (*Scheme 4*). Distillation provided an 87% yield of the pure product.

The general character of the *syn*-selective aldol reaction with *B*-cyclohexyldiiodoborane reagent was further examined with a branched-chain ketone, *i.e.*, 2-methylpentan-3-one, and an aralkyl ketone, *i.e.*, propiophenone, which were reacted with PhCHO, propionaldehyde, and isobutyraldehyde. Exclusive formation of *syn*-aldols was observed in all these cases. In the case of 2-methylpentan-3-one, the enol borinate was formed solely on the ethyl side (\geq 99% regioselectivity).

When the enolization of 1-phenylbutan-2-one was carried out under the standard conditions, no regioselectivity was observed. Enolboration occurred at both sides of the C=O group (*Scheme 5*). Nevertheless, the resulting α -substituted β -hydroxyketones were found to be exclusively *syn*-configured.

In summary, we have described a facile method for the preparation of *B*-dialkyliodoboranes and *B*-alkyldiiodoboranes as their MeCN complexes *via* a halogenexchange reaction. *B*-Cyclohexyldiiodoborane is a versatile reagent for the *syn*selective enolboration of a series of ethyl ketones.

We thank Dr. M. Venkat Ram Reddy for some preliminary experiments and the Herbert C. Brown Center for Borane Research for financial support of this work.

Experimental Part

General. All haloboranes were prepared according to [5]. CH_2Cl_2 and MeCN were distilled over CaH_2 and stored over 4-Å molecular sieves. $EtN(i-Pr)_2$ was distilled over CaH_2 and directly used. NaI was dried *in vacuo* at 150° for 3 h. All glassware was oven-dried, cooled, and assembled under N_2 . All of the experiments were carried out in a 100-ml round-bottom flask capped with a rubber septum, a magnetic stirring bar, and a connecting tube attached to a Hg bubbler under N_2 . The experimental techniques used in handling air- and moisture-sensitive compounds have been described in [15]. The ¹H-, ¹¹B- and ¹³C-NMR spectra were recorded on a *Varian Gemini-300* spectrometer with a *Nalorac-Ouad* probe.

General Procedure for the Halogen-Exchange Reaction. Preparation of $ChxBl_2 \cdot MeCN$ Complex. MeCN (5 ml) was added to $ChxBCl_2$ (990 mg, 6 mmol) at 0°. $ChxBCl_2 \cdot MeCN$ was formed immediately as a white solid that dissolved in MeCN gradually. The ¹¹B-NMR spectrum showed a peak at δ 6 ppm. To this soln. was added 15 ml of a 1m soln. (2.5 equiv.) of NaI in MeCN at r.t., and the mixture was stirred at this temp. for 3 h when NaCl was separated. The ¹¹B-NMR spectrum showed a peak at δ 6 ppm. The solvent was pumped off when a solid mixture was obtained. $ChxBI_2 \cdot MeCN$ was dissolved in CH_2Cl_2 , and NaCl and NaI were removed by filtration. The salts were washed with CH_2Cl_2 (3 × 2 ml). The ¹¹B-NMR spectrum showed a peak at δ 8 ppm. Removal of CH_2Cl_2 gave $ChxBI_2 \cdot MeCN$ as a solid.

Data of $ChxBI_2 \cdot MeCN$: ¹¹B-NMR (CH₂Cl₂): 8. ¹H-NMR (CDCl₃): 2.49 (*s*, 3 H); 1.88–0.80 (*m*, 11 H). ¹³C-NMR (CDCl₃): 117.0; 28.5; 27.4; 26.8; 3.1. (It is usually difficult to observe the C-atom α to the B-atom in a ¹³C-NMR spectrum due to rapid quadrapole-induced relaxation.)

General Procedure for the Enolboration and Aldolization. The above soln. of $ChxBI_2 \cdot MeCN$ in CH_2CI_2 was cooled to -78° , and the ketone (5 mmol) was added slowly. To this mixture, $EtN(i-Pr)_2$ (774 mg, 6 mmol) was added dropwise. The mixture was kept at -78° for 1 h. The ¹¹B-NMR spectrum of this mixture showed a peak at δ 41 ppm, revealing the completion of the reaction. The aldehyde (5 mmol) was then added dropwise at -78° , and the mixture was stirred for 3 h. The ¹¹B-NMR spectrum showed a peak at δ 31 ppm, indicating the formation of the boron aldolate. The mixture was then added to a phosphate buffer (pH 7) at r.t. and extracted with CH_2CI_2 (3 × 20 ml). The combined org. soln. was concentrated. The residue was dissolved in Et_2O (20 ml), and MeOH (5 ml) was added. The soln. was cooled to 0°, aq. 30% H_2O_2 (3 ml) was added slowly, and the oxidation was continued for 3 h. The product was extracted with Et_2O (3 × 20 ml). The combined org. a soln with Et_2O (3 × 20 ml). The combined org. In the extracted with Et_2O (3 × 20 ml). The product was extracted with Et_2O (3 × 20 ml). The combined org. In the evaluation of σ and σ and

syn-1-Hydroxy-2-methyl-1-phenylpentan-3-one. ¹H-NMR (CDCl₃): 7.40–7.20 (*m*, 5 H); 5.04 (*d*, *J* = 4.05, 1 H); 3.20–3.10 (OH); 2.84 (*dq*, *J* = 4.05, 7.14, 1 H); 2.58–2.26 (*m*, 2 H); 1.08 (*d*, *J* = 7.14, 3 H); 1.00 (*t*, *J* = 7.23, 3 H). ¹³C-NMR (CDCl₃): 141.9; 128.3; 127.4; 126.0; 73.3; 52.3; 35.5; 10.6; 7.5.

syn-5-Hydroxy-4,6-dimethylheptan-3-one. ¹H-NMR (CDCl₃): 3.52 (dd, J = 2.97, 8.46, 1 H); 2.88 - 2.80 (OH); 2.74 (dq, J = 2.97, 7.23, 1 H); 2.65 - 2.42 (m, 2 H); 1.73 - 1.56 (m, 1 H); 1.12 (d, J = 7.23, 3 H); 1.06 (t, J

7.26, 3 H); 1.01 (d, J = 6.51, 3 H); 0.86 (d, J = 6.84, 3 H). ¹³C-NMR (CDCl₃): 76.3; 47.2; 34.9; 30.6; 19.07; 19.01; 9.6, 7.7.

syn-5-Hydroxy-4-methylheptan-3-one. ¹H-NMR (CDCl₃): 3.82 (*m*, 1 H); 2.75 (OH); 2.70–2.40 (*m*, 3 H); 1.61–1.30 (*m*, 2 H); 1.13 (*d*, *J* = 7.23, 3 H); 1.06 (*t*, *J* = 7.23, 3 H); 0.96 (*t*, *J* = 7.26, 3 H). ¹³C-NMR (CDCl₃): 72.6; 49.3; 35.1; 26.9; 14.3; 10.5; 9.9; 7.6.

syn-1-Hydroxy-2,4-dimethyl-1-phenylpentan-3-one. ¹H-NMR (CDCl₃): 7.40 – 7.20 (m, 5 H); 5.00 (d, J = 3.84, 1 H); 3.15 (OH); 2.99 (m, 1 H); 2.60 (m, 1 H); 1.11 – 1.05 (m, 6 H); 0.99 (d, J = 6.90, 3 H). ¹³C-NMR (CDCl₃): 141.9; 128.3; 127.5; 126.1; 73.6; 50.8; 40.7; 18.1; 17.8; 11.1.

syn-3-Hydroxy-2-methyl-1,3-diphenylpropan-1-one. ¹H-NMR (CDCl₃): 8.00–7.90 (*m*, 2 H); 7.62–7.21 (*m*, 8 H); 5.25 (*d*, *J* = 2.34, 1 H); 3.75–3.60 (*m*, 2 H); 1.20 (*d*, *J* = 7.26, 3 H). ¹³C-NMR: 205.8; 141.9; 135.7; 133.6; 128.8; 128.7; 128.5; 128.3; 127.4; 126.1; 73.1; 47.1; 11.2.

syn-4-Hydroxy-3-methyl-1,4-diphenylbutan-2-one. ¹H-NMR (CDCl₃): 7.40–7.20 (m, 8 H); 7.10 (m, 2 H); 4.97 (d, J = 3.84, 1 H); 3.64 (s, 2 H); 3.02–2.90 (m, 2 H); 1.09 (d, J = 7.14, 3 H). ¹³C-NMR (CDCl₃): 212.8; 141.7; 133.5; 129.5; 128.8; 128.4; 127.5; 127.2; 126.0; 73.5; 51.7; 49.6; 10.9. EI-MS: 255 ($[M+1]^+$), 237, 149, 119, 107, 91, 57. Anal. calc. for C₁₇H₁₈O₂: C 80.31, H 7.09; found: C 80.17, H 7.17.

syn-1-Hydroxy-1,2-diphenylpentan-3-one. ¹H-NMR (CDCl₃): 7.40–7.16 (m, 10 H); 5.35 (d, J = 6.51, 1 H); 3.97 (d, J = 6.51, 1 H); 2.84 (OH); 2.44–2.28 (m, 1 H); 2.25–2.06 (m, 1 H); 0.86 (t, J = 7.23, 3 H). ¹³C-NMR (CDCl₃): 211.5; 141.4; 134.3; 129.6; 128.7; 128.2; 128.1; 128.0; 127.9; 127.7; 126.6; 74.5; 65.8; 36.4; 76. EI-MS: 255 ($[M + 1]^+$), 237, 205, 149, 107, 91, 57. Anal. calc. for C₁₇H₁₈O₂: C 80.31, H 7.09; found: C 80.22, H 7.01.

REFERENCES

- [1] A. Pelter, K. Smith, H. C. Brown, 'Borane Reagents', Academic Press, New York, 1988.
- [2] H. C. Brown, R. K. Dhar, R. K. Bakshi, P. K. Pandiarajan, B. Singaram, J. Am. Chem. Soc. 1989, 111, 3441.
- [3] a) H. C. Brown, J. Chandrasekharan, P. V. Ramachandran, J. Am. Chem. Soc. 1988, 110, 1539; b) P. V. Ramachandran, H. C. Brown, in 'Reductions in Organic Synthesis', Ed. A. A. Abdel-Magid, ACS Symp. Ser. 641, American Chemical Society, Washington, DC, 1996.
- [4] P. V. Ramachandran, M. V. Rangaishenvi, B. Singaram, C. Goralski, H. C. Brown, J. Org. Chem. 1996, 61, 341 and refs. cit. therein.
- [5] P. V. Ramachandran, W.-C. Xu, H. C. Brown, Tetrahedron Lett. 1997, 38, 769.
- [6] A. M. Salunkhe, H. C. Brown, Tetrahedron Lett. 1995, 36, 7987.
- [7] H. C. Brown, M. Zaidlewicz, 'Organic Syntheses via Boranes, Recent Developments', Aldrich Chemical Co., Milwaukee, WI, 2001, Vol. 2.
- [8] H. C. Brown, C. D. Roy, *Molecules Online* **1998**, *2*, 114.
- [9] K. Kinberger, W. Siebert, Z. Naturforsch., B: Chem. Sci. 1975, 30, 55.
- [10] H. C. Brown, P. V. Ramachandran, J. Chandrasekharan, Heteroat. Chem. 1995, 6, 117.
- [11] R. Soundararajan, D. S. Matteson, J. Org. Chem. 1990, 55, 2274.
- [12] U. P. Dhokte, R. Soundararajan, P. V. Ramachandran, H. C. Brown, Tetrahedron Lett. 1996, 37, 8345.
- [13] a) N. N. Joshi, M. Srebnik, H. C. Brown, J. Am. Chem. Soc. 1988, 110, 6246; b) M. Srebnik, N. N. Joshi, H. C. Brown, Isr. J. Chem. 1989, 29, 229.
- [14] K. Ganesan, H. C. Brown, J. Org. Chem. 1994, 59, 2336.
- [15] H. C. Brown, G. W. Kramer, A. B. Levy, M. M. Midland, in 'Organic Syntheses via Boranes', Wiley-Interscience, New York, 1975; Reprinted as Vol. 1 by Aldrich Chemical Co., Milwaukee, WI, 1999, Chapt. 9.

Received June 11, 2002