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A series of B-(iododialkyl)boranes and B-(alkyldiiodo)boranes have been readily synthesized as their
MeCN complexes from the corresponding chloro- and bromoboranes by treatment with NaI or KI in MeCN. In
the presence of EtN(i-Pr)2, the B-(cyclohexyldiiodo)borane-acetonitrile complex converts ethyl ketones
exclusively to the (Z)-enolates, which, upon aldolization with a series of aldehydes, provide the corresponding
syn-aldols exclusively in high yields.

1. Introduction. ± Of the several modified boranes available to the organic chemists,
the haloboranes have found significant applications in organic syntheses [1]. For
example, monochloroborane has been used for the preparation of dialkylchlorobo-
ranes, such as B-chloro(dicyclohexyl)borane and B-chloro(diisopinocampheyl)borane
(Aldrich: DIP-ChlorideTM). The former reagent is efficient for the anti-selective
enolboration�aldolization reaction [2], and the latter is an excellent reagent for the
reduction of several classes of ketones in very high enantiomeric excess [3]. B-
Chloro(dialkyl)boranes also act as intermediates in the synthesis of the corresponding
alkylamines [4]. Dichloroborane has been used for the synthesis of the corresponding
B-alkyldichloroboranes, which give rise to syn-selective enolboration�aldolization
reactions [5]. Dichloroborane-methyl sulfide has been utilized for the reduction of
alkyl or aryl azides to the corresponding amines [6]. Dibromoboranes have been used
in the synthesis of (E)- or (Z)-alkenes or (E,E)-, (E,Z)-, or (Z,Z)-dienes at well [7].
Recently, we have reported the cleavage of epoxides with the bromoborane-methyl
sulfide complex [8].

Although mono- and dichloro-, and mono- and dibromoboranes are commercially
available as their methyl-sulfide complexes, the corresponding iodoboranes are not
available. The synthesis of these iodoboranes involves the treatment of borane-methyl
sulfide with I2 in CS2 [9]. The hydroboration of alkenes with iodoboranes is not always
clean, though [10]. As an alternative, we treated dialkylboranes with I2 [10], or applied
the Matteson procedure [11], i.e., the in situ hydroboration with triiodoborane and tri-
methylsilane, for the preparation of B-dialkyliodoboranes [12]. However, these proce-
dures also failed to provide the corresponding B-alkyldiiodoboranes efficiently.

In contrast to B-alkylchloro- and B-alkylbromoboranes, the corresponding
iodoboranes have been sparingly used in organic synthesis. This could be attributed
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to the difficulties in their preparation and their lack of stability. We had shown that B-
iododiisopinocampheylborane is an excellent reagent for the asymmetric ring-opening
of meso-epoxides [13] and that B-dicyclohexyliodoborane is a syn-selective enolbora-
tion-aldolization reagent [14].

We have now found that both B-dialkyliodo- and B-alkyldiiodoboranes can be
readily synthesized via a quantitative halogen-exchange reaction. Our successful
synthesis of these iodoboranes and their application to the enolboration ± aldolization
reactions of ethyl ketones are reported herein.

2. Results and Discussion. ± Preparation of B-Dialkyliodoborane-Acetonitrile
Complex. Upon dissolving B-chlorodicyclohexylborane in MeCN, the 11B-NMR
spectrum revealed a shift from � 74 to 8 ppm, indicating strong complex formation.
Addition of 1.2 equiv. of NaI or KI dissolved in MeCN afforded a solid, presumably
NaCl or KCl, respectively, and the 11B-NMR spectra revealed a singlet at � 5 ppm
(Scheme 1). Although a downfield shift was expected in the NMR spectrum for the
iodoborane compared to the chloroborane complex, the observed upfield shift may be
attributed to a stronger MeCN complex with a superior Lewis acid.

Filtration of the inorganic salt and removal of MeCN provided a solid compound
well-soluble in pentane, CH2Cl2, and CCl4. However, upon dissolving in Et2O or THF,
the solution became warm, and the 11B-NMR spectrum showed a peak at � 52 ppm,
indicating that, as expected, the iodoborane reagent had cleaved the ether (Scheme 2).
Thus, we have discovered a trans-halogenation procedure for the synthesis of alkyl-
iodoboranes. We applied this procedure to the synthesis of a series of B-alkyliodobo-
ranes as their MeCN complexes from the corresponding chloro- and bromoboranes
(Scheme 1).

Preparation of B-Alkyldiiodoboranes. Although it should be possible to prepare B-
alkyldiiodoboranes via i) the hydroboration of an alkene with diiodoborane-methyl
sulfide [9], ii) the addition of I2 to the corresponding alkylborane (RBH2), or iii)
Matteson×s trimethylsilane reduction of the corresponding dichloroborane, we expe-
rienced difficulties in obtaining pure B-alkyldiiodoboranes with all of the above
procedures. We, therefore, applied the new trans-halogenation procedure for the

Scheme 1

��������� 	
����� ���� ± Vol. 85 (2002)3028



synthesis of B-alkyldiiodoboranes. The 11B-NMR spectrum of B-dichlorocyclohexyl-
borane in MeCN revealed a signal at � 6 ppm as compared to 62 ppm in pentane or
CH2Cl2. Treatment of this complex with 2.5 equiv. of NaI or KI in MeCN also led to the
precipitation of a solid, presumably NaCl or KCl, respectively. Surprisingly, unlike in
the case of the B-dialkyliodoborane-acetonitrile complex, the 11B-NMR spectrum
exhibited no change (Scheme 3). However, THF was instantaneously cleaved
(11B-NMR: � 31 ppm), revealing that the conversion to the diiodoborane-acetonitrile
complex had occurred.

Removal of the solvent (MeCN) provided a solid mixture of ChxBI2 ¥MeCN, NaCl,
and NaI. Chemically pure ChxBI2 ¥MeCN was obtained by selective dissolution in
CH2Cl2, followed by filtration and removal of the solvent. The solubility of ChxBI2 ¥
MeCN was examined next. Unlike Chx2BI ¥MeCN, ChxBI2 ¥MeCN does not dissolve in
hexanes. However, it readily dissolves in MeCN and CH2Cl2. The 11B-NMR spectra of
ChxBI2 ¥MeCN in these solvents revealed peaks at � 6 and 8 ppm, respectively. A series
of B-alkyldiiodoboranes were prepared from the corresponding B-alkyldichloro- and
B-alkyldibromoboranes (Scheme 3).

With the above mono- and dialkyliodoborane-acetonitrile complexes in our
hands, we decided to examine their utility in organic synthesis. We reported earlier
that B-dicyclohexyliodoborane is an efficient (Z)-enol- and syn-aldol-produc-
ing reagent [14]. Although we have already reported the utility of B-alkyldi-
chloro- and B-alkyldibromoboranes [5], we could not test the corresponding
diiodoboranes since none of our earlier procedures afforded the pure reagent.

Scheme 3
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Hence, we decided to examine ChxBI2 ¥MeCN for the enolboration�aldolization
reaction.

Enolboration�Aldolization with ChxBI2 ¥MeCN Complex. Addition of EtN(i-Pr)2
(1 equiv.) to the brown solution of ChxBI2 ¥MeCN in CH2Cl2, followed by 11B-NMR-
spectroscopic analysis, revealed a singlet at � 12 ppm, indicating that the amine
probably displaces MeCN from the complex. We used the amine complex for the
enolboration of diethyl ketone in CH2Cl2 at �78�. The mixture was stirred for 1 h,
followed by addition of PhCHO at �78�. After 2 h, the mixture was quenched with
phosphate buffer (pH 7.0) and oxidized (H2O2). 1H-NMR Analysis of the crude
product revealed the exclusive formation of the syn-aldol, thus providing the evidence
that the enolization was �99% stereoselective (Scheme 4). Distillation provided an
87% yield of the pure product.

The general character of the syn-selective aldol reaction with B-cyclohexyldiiodo-
borane reagent was further examined with a branched-chain ketone, i.e., 2-methyl-
pentan-3-one, and an aralkyl ketone, i.e., propiophenone, which were reacted with
PhCHO, propionaldehyde, and isobutyraldehyde. Exclusive formation of syn-aldols
was observed in all these cases. In the case of 2-methylpentan-3-one, the enol borinate
was formed solely on the ethyl side (� 99% regioselectivity).

When the enolization of 1-phenylbutan-2-one was carried out under the standard
conditions, no regioselectivity was observed. Enolboration occurred at both sides of the
C�O group (Scheme 5). Nevertheless, the resulting �-substituted �-hydroxyketones
were found to be exclusively syn-configured.

In summary, we have described a facile method for the preparation of B-
dialkyliodoboranes and B-alkyldiiodoboranes as their MeCN complexes via a halogen-
exchange reaction. B-Cyclohexyldiiodoborane is a versatile reagent for the syn-
selective enolboration of a series of ethyl ketones.

We thank Dr. M. Venkat Ram Reddy for some preliminary experiments and the Herbert C. Brown Center
for Borane Research for financial support of this work.
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Experimental Part

General. All haloboranes were prepared according to [5]. CH2Cl2 and MeCN were distilled over CaH2 and
stored over 4-ämolecular sieves. EtN(i-Pr)2 was distilled over CaH2 and directly used. NaI was dried in vacuo at
150� for 3 h. All glassware was oven-dried, cooled, and assembled under N2. All of the experiments were carried
out in a 100-ml round-bottom flask capped with a rubber septum, a magnetic stirring bar, and a connecting tube
attached to a Hg bubbler under N2. The experimental techniques used in handling air- and moisture-sensitive
compounds have been described in [15]. The 1H-, 11B- and 13C-NMR spectra were recorded on a Varian Gemini-
300 spectrometer with a Nalorac-Quad probe.

General Procedure for the Halogen-Exchange Reaction. Preparation of ChxBI2 ¥ MeCN Complex. MeCN
(5 ml) was added to ChxBCl2 (990 mg, 6 mmol) at 0�. ChxBCl2 ¥MeCN was formed immediately as a white solid
that dissolved in MeCN gradually. The 11B-NMR spectrum showed a peak at � 6 ppm. To this soln. was added
15 ml of a 1� soln. (2.5 equiv.) of NaI inMeCN at r.t., and the mixture was stirred at this temp. for 3 h when NaCl
was separated. The 11B-NMR spectrum showed a peak at � 6 ppm. The solvent was pumped off when a solid
mixture was obtained. ChxBI2 ¥MeCN was dissolved in CH2Cl2, and NaCl and NaI were removed by filtration.
The salts were washed with CH2Cl2 (3� 2 ml). The 11B-NMR spectrum showed a peak at � 8 ppm. Removal of
CH2Cl2 gave ChxBI2 ¥MeCN as a solid.

Data of ChxBI2 ¥ MeCN: 11B-NMR (CH2Cl2): 8. 1H-NMR (CDCl3): 2.49 (s, 3 H); 1.88 ± 0.80 (m, 11 H).
13C-NMR (CDCl3): 117.0; 28.5; 27.4; 26.8; 3.1. (It is usually difficult to observe the C-atom � to the B-atom in a
13C-NMR spectrum due to rapid quadrapole-induced relaxation.)

General Procedure for the Enolboration and Aldolization. The above soln. of ChxBI2 ¥MeCN in CH2Cl2 was
cooled to �78�, and the ketone (5 mmol) was added slowly. To this mixture, EtN(i-Pr)2 (774 mg, 6 mmol) was
added dropwise. The mixture was kept at�78� for 1 h. The 11B-NMR spectrum of this mixture showed a peak at
� 41 ppm, revealing the completion of the reaction. The aldehyde (5 mmol) was then added dropwise at �78�,
and the mixture was stirred for 3 h. The 11B-NMR spectrum showed a peak at � 31 ppm, indicating the formation
of the boron aldolate. The mixture was then added to a phosphate buffer (pH 7) at r.t. and extracted with
CH2Cl2 (3� 20 ml). The combined org. soln. was concentrated. The residue was dissolved in Et2O (20 ml), and
MeOH (5 ml) was added. The soln. was cooled to 0�, aq. 30% H2O2 (3 ml) was added slowly, and the oxidation
was continued for 3 h. The product was extracted with Et2O (3� 20 ml). The combined org. layer was washed
with aq. NaHCO3 (3� 10 ml) and brine (3� 10 ml), dried (MgSO4), and concentrated. The regio- and
diastereoselectivities were determined from the 1H-NMR spectrum of the crude product and further proved by
1H-NMR spectrum of the pure products obtained after a flash chromatography (SiO2 ; hexanes/AcOEt 8 :1).

syn-1-Hydroxy-2-methyl-1-phenylpentan-3-one. 1H-NMR (CDCl3): 7.40 ± 7.20 (m, 5 H); 5.04 (d, J� 4.05,
1 H); 3.20 ± 3.10 (OH); 2.84 (dq, J� 4.05, 7.14, 1 H); 2.58 ± 2.26 (m, 2 H); 1.08 (d, J� 7.14, 3 H); 1.00 (t, J� 7.23,
3 H). 13C-NMR (CDCl3): 141.9; 128.3; 127.4; 126.0; 73.3; 52.3; 35.5; 10.6; 7.5.

syn-5-Hydroxy-4,6-dimethylheptan-3-one. 1H-NMR (CDCl3): 3.52 (dd, J� 2.97, 8.46, 1 H); 2.88 ± 2.80
(OH); 2.74 (dq, J� 2.97, 7.23, 1 H); 2.65 ± 2.42 (m, 2 H); 1.73 ± 1.56 (m, 1 H); 1.12 (d, J� 7.23, 3 H); 1.06 (t, J�
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7.26, 3 H); 1.01 (d, J� 6.51, 3 H); 0.86 (d, J� 6.84, 3 H). 13C-NMR (CDCl3): 76.3; 47.2; 34.9; 30.6; 19.07; 19.01;
9.6, 7.7.

syn-5-Hydroxy-4-methylheptan-3-one. 1H-NMR (CDCl3): 3.82 (m, 1 H); 2.75 (OH); 2.70 ± 2.40 (m, 3 H);
1.61 ± 1.30 (m, 2 H); 1.13 (d, J� 7.23, 3 H); 1.06 (t, J� 7.23, 3 H); 0.96 (t, J� 7.26, 3 H). 13C-NMR (CDCl3): 72.6;
49.3; 35.1; 26.9; 14.3; 10.5; 9.9; 7.6.

syn-1-Hydroxy-2,4-dimethyl-1-phenylpentan-3-one. 1H-NMR (CDCl3): 7.40 ± 7.20 (m, 5 H); 5.00 (d, J�
3.84, 1 H); 3.15 (OH); 2.99 (m, 1 H); 2.60 (m, 1 H); 1.11 ± 1.05 (m, 6 H); 0.99 (d, J� 6.90, 3 H). 13C-NMR
(CDCl3): 141.9; 128.3; 127.5; 126.1; 73.6; 50.8; 40.7; 18.1; 17.8; 11.1.

syn-3-Hydroxy-2-methyl-1,3-diphenylpropan-1-one. 1H-NMR (CDCl3): 8.00 ± 7.90 (m, 2 H); 7.62 ± 7.21
(m, 8 H); 5.25 (d, J� 2.34, 1 H); 3.75 ± 3.60 (m, 2 H); 1.20 (d, J� 7.26, 3 H). 13C-NMR: 205.8; 141.9; 135.7;
133.6; 128.8; 128.7; 128.5; 128.3; 127.4; 126.1; 73.1; 47.1; 11.2.

syn-4-Hydroxy-3-methyl-1,4-diphenylbutan-2-one. 1H-NMR (CDCl3): 7.40 ± 7.20 (m, 8 H); 7.10 (m, 2 H);
4.97 (d, J� 3.84, 1 H); 3.64 (s, 2 H); 3.02 ± 2.90 (m, 2 H); 1.09 (d, J� 7.14, 3 H). 13C-NMR (CDCl3): 212.8; 141.7;
133.5; 129.5; 128.8; 128.4; 127.5; 127.2; 126.0; 73.5; 51.7; 49.6; 10.9. EI-MS: 255 ([M� 1]�), 237, 149, 119, 107, 91,
57. Anal. calc. for C17H18O2: C 80.31, H 7.09; found: C 80.17, H 7.17.

syn-1-Hydroxy-1,2-diphenylpentan-3-one. 1H-NMR (CDCl3): 7.40 ± 7.16 (m, 10 H); 5.35 (d, J� 6.51, 1 H);
3.97 (d, J� 6.51, 1 H); 2.84 (OH); 2.44 ± 2.28 (m, 1 H); 2.25 ± 2.06 (m, 1 H); 0.86 (t, J� 7.23, 3 H). 13C-NMR
(CDCl3): 211.5; 141.4; 134.3; 129.6; 128.7; 128.2; 128.1; 128.0; 127.9; 127.7; 126.6; 74.5; 65.8; 36.4; 7.6. EI-MS: 255
([M� 1]�), 237, 205, 149, 107, 91, 57. Anal. calc. for C17H18O2: C 80.31, H 7.09; found: C 80.22, H 7.01.
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